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Mononuclear Biscarbene Complexes by Direct Nucleophile Addition
to a CO Ligand of Fischer Arylcarbene Complexes

Jos) Barluenga,*[a] Andr)s A. Trabanco,[a] Iv0n P)rez-S0nchez,[a] Raquel De la Campa,[a]

Josefa Fl7rez,[a] Santiago Garc9a-Granda,[b] and :ngel Aguirre[b]

Mononuclear Group 6 Fischer biscarbene complexes I,
which are organometallic compounds that have two carbene
ligands bonded to the same transition-metal atom, have
been much less investigated than the corresponding Fischer
monocarbene complexes II (Figure 1).[1] Only very few ex-
amples of this class of compounds I have been reported and
characterized by reactivity and/or X-ray studies, and their
synthetic potential remains to be explored. In addition,
there is a lack of a general method to produce such com-
plexes.

The classical Fischer synthesis (successive treatment of a
Group 6 hexacarbonylmetal with an organolithium (2 equiv)
and then a strong electrophile) is limited to only particular
types of both cyclic[2] and acyclic mononuclear cis-biscar-
bene complexes,[3] and typically affords low product yields.

In addition, these complexes have been prepared by thermal
reaction of tetraaminoalkenes with the corresponding
Group 6 M(CO)6 complex,[4,5] and a single tungsten biscar-
bene derivative was synthesized from an (amino)-
ACHTUNGTRENNUNG(alkenyl)monocarbene complex and a phenyl isocyanide
under photochemical conditions.[6]

The synthesis of a mononuclear biscarbene complex by
direct reaction of a Fischer monocarbene complex with a
nucleophile has been reported to succeed only in the case of
cyclic diaminocarbene complexes which after successive
treatment with an organolithium (MeLi or PhLi) and a
strong electrophile (MeSO3F or Et3OBF4) provided mixed
cis-biscarbene complexes.[4] The addition of a nucleophile to
a pentacarbonylcarbene complex such as II usually takes
place at the carbene carbon atom, which has a strong elec-
trophilic character, and not at one of the CO ligands.[7] Nev-
ertheless, organolithium addition at a coordinated CO oc-
curred when nucleophilic attack at the carbene carbon has
been suppressed by a previous enolization-type reaction;[8]

and an intramolecular addition of a heteronucleophile to a
CO ligand of a neutral alkoxymonocarbene complex has
been referred to explain the formation of a reaction prod-
uct.[9]

On the other hand, mononuclear biscarbene complexes of
Group 6 have been proposed as intermediates in the ther-
mal carbene–carbene coupling reactions of either Fischer
mononuclear monocarbene complexes[10] or dinuclear biscar-
bene complexes.[11] These carbene ligand coupling processes,
that produced alkenes, have also been reported to occur at
room temperature in the presence of a palladium(0)[12] or a
copper(I)[13] catalyst.

In the context of our ongoing studies of the reactivity of
Fischer carbene complexes with nucleophiles,[14] we have
found that in the case of (menthyloxy) ACHTUNGTRENNUNG(aryl)monocarbene
complexes the site of nucleophile addition is strongly de-
pending on the nature of the organolithium compound.
While butyllithium and alkynyllithiums react with the car-
bene carbon atom,[15a,16] and more substituted alkyllithiums
(such as sBuLi or tBuLi) and phenyllithium undergo conju-
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Figure 1. General structure of mononuclear Fischer biscarbene complexes
I and monocarbene complexes II.
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gate addition to the aromatic ring,[15] alkenyllithiums exhibit
clean addition to a CO ligand. Herein, we describe a general
method for the preparation of different types of mononu-
clear biscarbene complexes of chromium and tungsten
which involves the unusual attack of a nucleophile on a CO
ligand of the corresponding Fischer arylcarbene complex.

In the initial experiments we observed that the successive
treatment of tungsten (menthyloxy)ACHTUNGTRENNUNG(phenyl)carbene com-
plex (�)-1a[17] with an alkenyllithium [(E)-2-phenylethenyl-
lithium or 1-methylethenyllithium] and then with methyl tri-
flate under the reaction conditions shown in Scheme 1, pro-
vided, after silica gel column chromatography, cis-1,2-dia-
lkoxy-1,3-dienes 2a,b, each one as a single diastereoisomer.
The selective formation of compounds 2 can be understood
assuming an addition of the alkenyllithium to a CO ligand
of complex (�)-1a to give lithioxy intermediate A and after
treatment with MeOTf (alkoxyaryl)(methoxyalkenyl)biscar-
bene complexes B, which would undergo a spontaneous car-
bene–carbene coupling reaction. Presumably, biscarbene
complexes B have the two carbene ligands in the thermody-
namically more stable cis orientation[18] and with a disposi-
tion of the alkoxy groups to the same side of the molecule
what could be controlled by intramolecular coordination of
the lithium cation to the menthyloxy group oxygen as de-
picted in model A; (Scheme 1). This model accounts for the
selective formation of diastereoisomers 2 with a Z configu-
ration of the 1,2-dialkoxy substituted C=C bond. The stereo-
chemistry was ascertained on the bases of a NOE difference
experiment performed with compound 2a.

Analogous reactions carried out with carbene complex 1a
and functionalized organolithium compounds but quenched
with silica gel instead of MeOTf afforded functionalized a-
alkoxyketones 3 (Scheme 2). The addition of 1-(dibenzyl-
aminomethyl)ethenyllithium to (�)-1a provided enone 3a[19]

as a 10:1 mixture of diastereoisomers while combination of
2-lithio-1,3-dithiane (a stabilized alkyllithium) with (� )-1a

furnished 3b as a roughly equimolecular mixture of isomers.
Accordingly, these reactions would involve formation of
(alkoxy)ACHTUNGTRENNUNG(hydroxy)biscarbene complexes C and, after intra-
molecular carbene–carbene coupling, 2-menthyloxy substi-
tuted enols D (Scheme 2).

We found that heteronucleophiles as lithium amides or
potassium alkoxides are also able to react with a CO ligand
of complexes 1 (Scheme 3). Thus, the reaction of chromium
carbene complex (� )-1b with the lithium amide of morpho-
line, which requires the presence of TMEDA (N,N,N’,N’-tet-
ramethylethylenediamine),[20] furnished after treatment with
silica gel a-menthyloxyamide 4a as a single isomer.[21] In a
similar way, addition of potassium tert-butoxide to complex
(�)-1a led to a-alkoxyester 4b (1:1 mixture of diastereoiso-
mers).[22] These products 4a,b are likewise the stable tauto-
meric form of 2-alkoxyenols arising from intramolecular

Scheme 1. Two-heteroatom-stabilized mononuclear (alkoxy)-
ACHTUNGTRENNUNG(alkoxy)biscarbene complexes B. a) THF, �78 to 20 8C; b) MeOTf, Et2O,
0 to 20 8C. R*OH= (�)-menthol.

Scheme 2. Two-heteroatom-stabilized mononuclear (alkoxy)(hydroxy)-
ACHTUNGTRENNUNGbiscarbene complexes C. R*OH= (�)-menthol or (� )-menthol. Bn=

CH2Ph.

Scheme 3. Three-heteroatom-stabilized mononuclear (alkoxy)(alkoxyhy-
droxy or aminohydroxy)biscarbene complexes E. R*OH= (�)-menthol
or (� )-menthol. [Cr]= (CO)5Cr. TMEDA=N,N,N’,N’-tetramethylethyl-
enediamine.
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coupling of the two carbene ligands of (alkoxy)(alkoxyhy-
droxy or aminohydroxy)biscarbene complexes E
(Scheme 3).

To obtain a more direct evidence of the formation of
mononuclear biscarbene complexes we decided to test (ami-
no)arylcarbene complexes, which under the above reaction
sequence would produce more stable biscarbene complexes
given the greater stability of the aminocarbene complexes in
relation to the alkoxycarbene derivatives.[23] Gratifyingly, it
was observed that aminocarbene complex 1c reacted with
an alkenyllithium and MeOTf as summarized in Scheme 4
to afford the desired (aminoaryl)(alkoxyalkenyl)biscarbene
complexes 5a,b each one as a single diastereoisomer. These
mononuclear biscarbene complexes 5 are relatively stable
derivatives at room temperature but as a preventive mea-
sure they were stored refrigerated (�3 8C) and under N2. In
fact, when a solution of biscarbene complex 5a in hexane/
ethyl acetate (5:1) was heated at 35 8C for a short time
(15 min) the diastereoselective and almost quantitative for-
mation of (1Z,3E)-1-amino-2-alkoxy-1,3-diene (6) was ob-
served (Scheme 4). The stereochemistry of this carbene–car-

bene coupling product 6 was ascertained from a 2D NOESY
experiment.[24] Biscarbene derivatives 5 represent the first
examples of mononuclear biscarbene complexes stabilized
by two heteroatoms and with an acyclic structure which
have been isolated and characterized. The 13C NMR spectra
of compounds 5 show four signals between 200–220 ppm as-
signed to four chemical inequivalent CO ligands what re-
veals a cis relative configuration of the two carbene ligands.
From the 1D and 2D NMR studies the relative arrangement
of the substituents of each carbene ligand could not be es-
tablished.

Although compounds 5 are oil materials, a solid derivative
7 was successfully synthesized using a heteronucleophile
(Scheme 5). The successive addition to complex 1c of mor-
pholine lithium amide and MeOTf provided diastereoselec-
tively (amino)(aminoalkoxy)biscarbene complex 7 (yellow
solid). An X-ray structure determination of a single crystal
of 7[25] confirmed the cis disposition of the two carbene li-

gands and allowed to ascertain a syn orientation of the pyr-
rolidinyl and methoxy groups (Figure 2). Biscarbene com-
plex 7 stabilized by three heteroatoms is stable at room tem-

perature for long periods of time even in solution (at least
two days). However, heating (45 8C) solutions of this com-
plex 7 in THF, toluene or hexane/EtOAc did not lead to the
carbene–carbene coupling product, instead decomposition
materials were obtained. In addition, the X-ray analysis re-
vealed that the single crystal of 7 chosen for the study had a
chiral space group (P212121) while, as expected, a dichloro-
methane solution of compound 7 showed no optical activity.
This can be explained assuming a segregation of enantio-
mers upon crystallization which is known as spontaneous
resolution.[26] Compound 7 which is a chiral complex with
exclusively achiral ligands in an octahedral environment,
presumably exhibits atropisomerism (carbene ligands do not
have free rotation) and condensation into crystals occurred
with formation of a conglomerate[27] (each crystal is formed
by only one enantiomer but the sample as a whole is race-
mic because it contains equal amounts of enantiomorphic

Scheme 4. Two-heteroatom-stabilized mononuclear (amino)-
ACHTUNGTRENNUNG(alkoxy)biscarbene complexes 5. [W]= (CO)5W.

Figure 2. ORTEP representation of (R)-7 in the crystal structure with
thermal ellipsoids set at 30% probability. The dihedral angle between the
least squares planes through the atoms W1-C1-N1-C2 and W1-C12-N2-
O1 is 69.4(1)8. Bond lengths W1�C1 2.260(6) and W1�C12 2.292(7) U.
The W coordination angles vary from 83.4(3) to 98.6(3)8 indicating a dis-
torted octahedral environment.

Scheme 5. Three-heteroatom-stabilized mononuclear (amino)(aminoalk-
oxy)biscarbene complex 7. [W]= (CO)5W. TMEDA=N,N,N’,N’-tetrame-
thylethylenediamine.

Chem. Eur. J. 2008, 14, 5401 – 5404 M 2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemeurj.org 5403

COMMUNICATIONFischer Arylcarbene Complexes

www.chemeurj.org


condensates). The enantiomer of 7 shown in Figure 2 has
been designed as (R) [(R)-7]. This descriptor was assigned
assuming a chiral axis going through the carbene carbon
atoms C1 and C12 and applying the sequence rule.[28]

In summary, different types of mononuclear Fischer bis-
carbene complexes have been prepared by nucleophilic ad-
dition to a CO ligand of a heteroatom-stabilized arylcarbene
complex. The intramolecular and diastereoselective car-
bene–carbene coupling is a highly favored process in these
complexes that results in the formation of electron-rich 1,3-
dienes including chiral derivatives.
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